Prepared following the Guidelines in Appendix 1 of the HSE publication L62 0 Guidance on regulation 6 of the Chemicals (Hazard Information and Packaging) Regulations 1994

PRODUCT IDENTIFICATION

Name : Valve Regulated Lead Acid (VRLA) Battery.
Classification : Batteries, wet, non-spillable, Electric storage. Substance Identification No. UN 2800

Manufacturer's Name & Address:
Yuasa Battery (UK) Ltd
Unit 22 Rassau Industrial Estate
Ebbw Vale
Blaenau, Gwent NP3 5SD
UK

For further information contact the manufacturer:
Tech Division:
Tel: +44 (0) 1495 350121
Fax: +44 (0) 1495 350661

COMPOSITION

Component Approx. by Wt or volume Air Exposure Limits (mg/m3) O.E.L.

- Lead and lead alloy metals 35%
- Lead inorganic compounds 40%
- Electrolyte – Sulphuric Acid (up to 40% w/w) 15%
- Separator – Glass Fibre 2%

HAZARDS IDENTIFICATION

- Sulphuric Acid (up to 40% w/w): Severe IRRITATION and DAMAGE to internal tissues if swallowed, causes IRRITATION of eyes and skin and may cause BURNS and DERMATITIS. R35: Causes severe burns (15% & above). No specific antidotal treatment, symptomatic support required. No known delayed effects after single exposure apart from Consequences of local tissue damage.

- Lead inorganic compounds: TOXIC by ingestion or inhalation of dust, vapour or fume. R61: May cause harm to the unborn child. R20/22: Harmful by inhalation and if swallowed. R33: Danger of cumulative effects.

- Glass mat separator: Fibres may cause IRRITATION to skin or eyes upon exposure and to Internal tissues if inhaled or swallowed.
FIRST AID MEASURES

INHALATION

Sulphuric Acid: If mist is inhaled, remove from exposure and to fresh air immediately. If there are any breathing difficulties take to hospital.

Lead: Remove from exposure, wash out mouth and wash.

Glass Fibres: If fibres have been inhaled, remove to fresh air. If irritation persists take to hospital.

EXPOSURE OF EYES

Sulphuric Acid: Wash out immediately with copious amounts of water for at least 15 Minutes, holding the eye open if necessary. Take to hospital.

Lead Compounds: Wash out immediately with copious amounts of water for at least 15 minutes holding the eye open if necessary. Take to hospital.

EXPOSURE OF SKIN

Sulphuric Acid: Wash off skin immediately with copious amounts of water for at least 15 minutes. Remove all contaminated clothing, which must be washed thoroughly before re-use. Remove and dispose of contaminated footwear.

Lead Compounds: Wash off skin thoroughly with soap and water.

FIRE FIGHTING MEASURES

Batteries on charge may emit hydrogen gas that is highly flammable and will form explosive mixtures in air from 4% to 76% concentration. This may be ignited by a spark at any voltage, especially from the batteries themselves.

Batteries on charge must be isolated from power source before attempting to put out a fire. Switch off the power before disconnecting the batteries from the power source.

Batteries in use will be part of an electrical circuit and so water must never be used to put out a fire.

Damaged batteries may expose negative plates (grey) colour that may ignite if allowed to dry out. These plates should be wetted down with water after the battery has been removed from all electrical circuits.

Use extinguisher types: CO2, Dry Powder

Hazardous decomposition products: Carbon monoxide, sulphur dioxide, sulphur trioxide, lead fume and vapour, toxic fumes from decomposition of battery case materials.

Special precautions: Use self-contained breathing apparatus and full acid resistant protective clothing.

ACCIDENTAL RELEASE MEASURES

These batteries are designed not to leak under normal conditions. If, however, electrolyte does leak out of any battery for any reason, it should be absorbed onto dry sand, earth or other inert material and must not be allowed to enter any drains. If possible, neutralize any leaked electrolyte using soda ash, sodium bicarbonate, sodium carbonate or calcium carbonate powder and then wash thoroughly with water. Collect absorbed material, and place in an inert sealed container for disposal.

HANDLING AND STORAGE

Store batteries in a cool and dry area with an impervious surface. Store under roof and protect against adverse weather conditions. Protect against physical damage and exposure to organic solvents. Do not allow metal objects to contact both terminals at the same time. This will cause damage, sparking and possible injury.

Large batteries should be handled and moved using mechanical means to prevent risk of injury.
EXPOSURE CONTROLS/PERSONAL PROCTION

Under normal conditions, where there is no damage and no visible trace of liquid or solid deposit on the batteries, they may be handled without any additional P.P.E. Where there are any signs of damage or liquid or solid deposits, rubber gloves and acid resistant clothing must be worn when handling the batteries and affected packaging to protect against the effects of any acid electrolyte that may be present. If it is suspected that free acid electrolyte is present, then safety glasses must be worn. If large amounts are present, chemical goggles or face shield should be used.

PHYSICAL AND CHEMICAL PROPERTIES

The undamaged product is a manufactured item in an inert plastic case, which will burn if subjected to high temperatures. Some battery types are made in flame retardant plastic, see technical specification.

Batteries on charge may emit hydrogen gas, which is highly flammable and forms explosive mixtures in air.

Electrolyte is a clear liquid with little or no smell. It comprise water and up to 40% sulphuric acid. Leaked electrolyte may dry out to form white patches or patches of other colours, usually green or brown if metals have been attacked, which may be acidic.

In damaged batteries, lead plates can be grey or brown with varying amounts of white. Grey material may ignite if left to dry out.

STABILITY AND REACTIVITY

The undamaged product is stable up to 60°C.

TOXICOLOGICAL INFORMATION

Sulphuric Acid: LD50 2140mg/kg oral, rat LC50 0.51 mg/L inh rat

Lead compounds No specific data

ECOLOGICAL INFORMATION

Sulphuric Acid Toxic to fish and algae. Concentrations of 100% sulphuric acid greater than 1.2mg/L may be lethal to fish. Lowering pH below about 5 would induce fatalities in aquatic life.

Lead compounds No specific data.

DISPOSAL INFORMATION

UNDAMAGED & DAMAGED BATTERIES Store in impervious inert container and send to smelter for recycling. Must be treated as special waste, therefore contact supplier for assistance.

ABSORBED SPILLED ELECTROLYTE Place in sealed inert container. Treat as special waste. Contact supplier for assistance.
TRANSPORT INFORMATION

VRLA batteries, supplied by Yuasa Battery Sales (UK) Ltd are exempt from requirements of:

Dangerous Goods Regulations, 30th Ed., effective from 01.01.96, because they meet ICAO Special Provision A67 as Class 8., Group111, UN No. 2800, Batteries, wet, non-spillable, electric storage.

International Maritime Dangerous Goods (IMDG) Code Amendment 27-94, which incorporates the ICAO special Provision A67, for any special conditions. Other relevant general conditions apply.

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR)

REGULATORY INFORMATION

Batteries supplied by Yuasa Battery Sales (UK) Ltd are subject to The Batteries and Accumulators (containing Dangerous Substances) Regulations 1994 and are marked in accordance with the requirements of Regulation4.

OTHER INFORMATION

To ensure safe use of VRLA batteries by Yuasa Battery Sales (UK) Ltd, the following precaution must be observed:

Never install batteries in a gas-tight enclosure as gases may be generated during use.
Batteries must be charged on a voltage-regulated charging system and adequate ventilation provided to avoid the build-up of ignitable gases. Contact your YUASA battery supplier for advice.
Never short-circuit battery terminals as sparks and arcs produced can injure personnel and are a fire hazard.
Do not charge batteries above +50oC, or discharge or store above +60oC
Under extreme conditions of charging equipment malfunctions and/or battery failure, high voltage and high temperature conditions may occur causing the evolution of Hydrogen Sulphide (H2S) gas, which is toxic. If detected by its odour of rotten eggs (at extremely low concentrations), switch off the charging equipment, evacuate all personnel from the area and ventilate well. Seek advice before attempting to re-start charging.